Corrigé du DS3-2425. Sujet n°1

Exercice n°1:

- 1. On a $u_n v_n = \ln(n)$ or $\frac{\ln(n)}{n} = o(1) \Rightarrow u_n v_n = o(u_n)$ Donc les suites (u_n) et (v_n) sont équivalentes
- 2. On a $\frac{e^{u_n}}{e^{v_n}} = e^{u_n v_n} = e^{\ln(n)} = n$ qui ne tend pas vers 1, donc les suites (e^{u_n}) et (e^{v_n}) ne sont pas équivalentes.
- 3. Si les suites (e^{a_n}) et (e^{b_n}) sont équivalentes alors $e^{a_n-b_n} \to 1 \Longrightarrow a_n-b_n = o(1)$ Réciproquement, si $a_n-b_n=o(1)$ alors $e^{a_n-b_n} \to 1 \Longrightarrow e^{a_n} \sim e^{b_n}$
- 4. On suppose que $a_n \sim b_n$ On a clairement $(a_n)^{\frac{1}{n}} = e^{\frac{1}{n}ln(a_n)}$ et $\frac{1}{n}ln(a_n) \frac{1}{n}ln(b_n) = \frac{1}{n}ln\left(\frac{a_n}{b_n}\right) \to 0$ D'après la question3 on aura l'équivalence des suites $\left((a_n)^{\frac{1}{n}}\right)$ et $\left((b_n)^{\frac{1}{n}}\right)$.

Exercice n°2:

1. Soit $(A,B) \in S_n^{++}$ et $t \in [0,1]$ on pose $M = tA + (1-t)B \Rightarrow M^T = M$ car $S_n(\mathbb{R})$ est un sous espace vectoriel de $M_n(\mathbb{R})$

$$\forall X \in \mathbb{R}^n, X \neq 0, X^T M X = t(X^T A X) + (1-t)X^T B X \geq 0 \ car X^T A X > 0 \ et X^T B X > 0$$

$$Si \ t = 0 \Rightarrow X^T M X = X^T B X > 0$$

$$Si \ t \neq 0 \Rightarrow X^T M X = t(X^T A X) + (1 - t)X^T B X \ge t(X^T A X) > 0$$

Finalement $M \in S_n^{++} \Rightarrow [A, B] \subset S_n^{++}$ qui est bien une partie connexe

2. On considère l'application $\phi: M \mapsto M^TM - I_n$ elle est continue sur $M_n(\mathbb{R})$

Or
$$O_n(\mathbb{R}) = \phi^{-1}(\{0\})$$
 et $\{0\}$ est une partie fermée de $M_n(\mathbb{R})$

Donc $O_n(\mathbb{R})$ est une partie fermée de $M_n(\mathbb{R})$ en tant qu'image réciproque d'une partie fermée par une application continue

$$\forall M \in O_n(\mathbb{R}), M^TM = I_n \Rightarrow ||M|| = \sqrt{n}$$
, ainsi $O_n(\mathbb{R})$ est une partie bornée

Finalement $M_n(\mathbb{R})$ étant de dimension finie, $O_n(\mathbb{R})$ est une partie compacte de $M_n(\mathbb{R})$

3. Si
$$M \in O_n(\mathbb{R})$$
 alors $det(M^TM) = det(M^T)det(M) = \left(det(M)\right)^2 = 1 \Longrightarrow det(M) = \pm 1$

4. On a immédiatement $det(O_n(\mathbb{R})) = \{1, -1\}$ qui n'est pas un intervalle, donc n'est pas connexe dans \mathbb{R} . Si $O_n(\mathbb{R})$ est une partie connexe alors son image par une application continue sera aussi connexe, le déterminant étant continue, $O_n(\mathbb{R})$ n'est pas une partie connexe

Problème:

Q1. Puisque f est dans E, f et f' sont continues sur [-a,a], or $\forall t \in [0,\frac{\pi}{2}]$, $\forall x \in [-a,a]$, $x \sin t \in [-a,a]$. Ainsi $t \mapsto f(x \sin t)$ et $t \mapsto f'(x \sin t)$ sont continue sur $\left[0,\frac{\pi}{2}\right]$. u(f) et v(f) existent bien.

Q2.
$$\forall n \in \mathbb{N}, \forall x \in I, f_n(x) = x^n. \forall x \in I, u(f_n)(x) = \frac{2}{\pi} \int_{0}^{\frac{\pi}{2}} x^n \sin^n t \, dt = x^n \frac{2}{\pi} W_n. Donc \ u(f_n) = \frac{2}{\pi} W_n f_n.$$

$$\forall x \in I, \ v(f_n)(x) = \int_0^{\frac{\pi}{2}} nx^n \sin^{n-1} t \, dt = x^n n W_{n-1} \ si \ n \ge 1 \ et \ v(f_0)(x) = 1$$

Donc
$$v(f_n) = nW_{n-1}f_n$$
 si $n \neq 0$ et $v(f_0) = f_0$

Q3. $\forall P \in \mathbb{R}[X]$, $P(x) = \sum_{n=0}^{d} \alpha_n f_n(x)$, d'après la question 2. $u(f_n)$ et $v(f_n)$ sont des polynômes et comme u et v sont linéaires je peux affirmer que u(P) et v(P) seront des polynômes

$$\forall P \in \mathbb{R}[X], \ u(P)(x) = \sum_{n=0}^{d} \alpha_n u(f_n)(x) \ et \ v(P)(x) = \sum_{n=0}^{d} \alpha_n v(f_n)(x).$$

Q4. Pour tout entier k inférieur à n, on a $u(f_k) = \frac{2}{\pi}W_k f_k$ donc f_k est vecteur propre de u associé à la valeur propre $\frac{2}{\pi}W_k$.

Ainsi $(f_k)_{k \in [0,n]}$ est une famille libre de n+1 vecteurs propres, soit une base $\mathbb{R}_n[X]$ de vecteurs propres de u, finalement la restriction de u à $\mathbb{R}_n[X]$ est diagonalisable

Q5. A l'aide d'une intégration par parties sur le calcul de W_{n+2} , j'obtient $\forall n \in \mathbb{N}, W_{n+2} = \frac{n+1}{n+2}W_n$

$$W_{n+2} = \int_{0}^{\frac{\pi}{2}} \sin^{n+1}(t) \sin(t) dt = \left[-\sin^{n+1}(t) \cos(t) \right]_{0}^{\frac{\pi}{2}} + \int_{0}^{\frac{\pi}{2}} (n+1) \sin^{n}(t) \cos^{2}(t) dt$$

$$= (n+1) \int_{0}^{\frac{\pi}{2}} \sin^{n}(t) dt - (n+1) \int_{0}^{\frac{\pi}{2}} \sin^{n+2}(t) dt \qquad (car \cos^{2}t = 1 - \sin^{2}t)$$

$$W_{n+2} = (n+1)W_{n} - (n+1)W_{n+2}$$

On démontre l'égalité demandée par récurrence

Si
$$n = 0$$
, $W_0 W_1 = \int_0^{\frac{\pi}{2}} dt \int_0^{\frac{\pi}{2}} \sin t dt = \frac{\pi}{2} = \frac{\pi}{2(0+1)}$

On suppose que
$$W_n W_{n+1} = \frac{\pi}{2(n+1)}$$
 alors $W_{n+1} W_{n+2} = \frac{n+1}{n+2} W_n W_{n+1} = \frac{(n+1)}{(n+2)} \frac{\pi}{2(n+1)} = \frac{\pi}{2(n+2)}$

Donc $\forall n \in \mathbb{N}$, $W_n W_{n+1} = \frac{\pi}{2(n+1)}$

Q6.
$$\forall t \in \left[0, \frac{\pi}{2}\right]$$
, $\sin^{n+1}(t) \leq \sin^{n}(t) \Rightarrow W_{n+1} \leq W_{n}$. Ainsi (W_{n}) est décroissante.

On a
$$W_{n+2} \le W_{n+1} \le W_n \Rightarrow \frac{W_{n+2}}{W_n} = \frac{n+1}{n+2} \le \frac{W_{n+1}}{W_n} \le 1 \Rightarrow \lim_{n \to \infty} \frac{W_{n+1}}{W_n} = 1$$

Ainsi
$$W_n \sim W_{n+1} \Rightarrow W_{n+1} W_n \sim W_n^2 \sim \frac{\pi}{2n} \Rightarrow W_n \sim \sqrt{\frac{\pi}{2n}}$$

Finalement, je peux affirmer que $\lim_{n\to\infty} W_n = 0$.

Q7. *M* définie bien une norme sur les fonctions continues sur un segment, comme f et f ' sont continues sur I, je peux affirmer que $f \in E$, $N(f) = M(f) + M(f') \in \mathbb{R}^+$

$$N(f) = 0 \Rightarrow M(f) = 0$$
 et $M(f') = 0 \Rightarrow f = 0$ et $f' = 0 \Rightarrow f = 0$

$$N(\lambda f) = M(\lambda f) + M(\lambda f') = |\lambda|(M(f) + M(f')) = |\lambda|N(f)$$

$$N(f+g) = M(f+g) + M(f'+g') \le M(f) + M(g) + M(f') + M(g') = N(f) + N(g)$$
.

Finalement N est une norme sur E.

Q8.
$$\forall x \in I, \ |u(f)(x)| \le \frac{2}{\pi} \int_{0}^{\frac{\pi}{2}} |f(x \sin t)| dt \le \frac{2}{\pi} \int_{0}^{\frac{\pi}{2}} M(f) dt = M(f)$$

Ainsi $M(u(f)) \le M(f)$. Donc u est continue de (E,M) dans (E,M).

On en déduit que $||u|| \le 1$ et si on considère $f_0(x) = 1$ alors $u(f_0)(x) = \frac{2\pi}{\pi} = 1 \implies 1 \le ||u||$

Finalement $||u|| = \sup \left(\frac{M(u(f))}{M(f)}\right) = 1$

Q9.
$$(u(f))'(x) = \frac{2}{\pi} \int_{0}^{\frac{\pi}{2}} \sin(t) f'(x \sin t) dt$$

$$\forall x \in I, \ \left| u(f)'(x) \right| \le \frac{2}{\pi} \int_{0}^{\frac{\pi}{2}} \left| \sin t \right| \left| f'(x \sin t) \right| dt \le \frac{2}{\pi} \int_{0}^{\frac{\pi}{2}} \left| f'(x \sin t) \right| dt \le \frac{2}{\pi} \int_{0}^{\frac{\pi}{2}} M(f') dt = M(f')$$

Donc
$$M(u(f)) \le M(f)$$
 or $M(u(f)) \le M(f) \Rightarrow N(u(f)) \le N(f)$

Finalement u est continue de (E,N) dans (E,N).

On en déduit que $||u|| \le 1$ et si on considère $f_0(x) = 1$ alors $u(f_0)(x) = \frac{2\pi}{\pi} = 1$ et $u(f_0')(x) = 0$ donc $N(u(f_0)) = 1 \Rightarrow 1 \le ||u||$

Finalement
$$||u|| = \sup \left(\frac{N(u(f))}{N(f)}\right) = 1$$

Q10. On utilise à nouveau $\forall n \in \mathbb{N}, \forall x \in I, f_n(x) = x^n$

Si
$$n \neq 0$$
 alors $v(f_n)(x) = \frac{2}{\pi} n W_{n-1} x^{n-1}$, ainsi $\frac{M(v(f_n))}{M(f_n)} = \frac{n W_{n-1} a^n}{a^n} = n W_{n-1} \sim \sqrt{\frac{n\pi}{2}} \to +\infty$

Il est donc impossible de trouver K tel que $\forall f \in E, M(v(f)) \leq KM(f)$

Finalement v n'est pas continue de (E,M) dans (E,M).

Q11.
$$\forall x \in I, |v(f)(x)| \le |f(0)| + |x| \int_{0}^{\frac{\pi}{2}} |f'(x \sin t)| dt \le M(f) + a \int_{0}^{\frac{\pi}{2}} M(f') dt \le M(f) + a \frac{\pi}{2} M(f')$$

Soit
$$K = \max\left(1, \frac{a\pi}{2}\right)$$
, $\forall x \in I$, $|v(f)(x)| \le K(M(f) + M(f')) = KN(f)$

Soit $M(v(f)) \le KN(f)$ et ainsi v est continue de (E,N) dans (E,M).

Q12. Sachant que v est continue de (E,N) dans (E,M), si les normes N et M étaient équivalentes alors v serait continue de (E,M) dans (E,M). Ce qui est faux d'après la question9.

Finalement les normes N et M ne sont pas équivalentes.

Q13. Si
$$f \in E$$
 alors $f' \in E = \overline{\mathbb{R}[X]} \Rightarrow \exists (Q_n) \in (\mathbb{R}[X])^{\mathbb{N}}$ telle que $M(Q_n - f') \to 0$

On définit la suite de polynôme (P_n) telle que $P_n(x) = \int_0^x Q_n(t) dt + f(0)$ on a bien $P_n(0) = f(0)$

De plus
$$M(P_n'-f')=M(Q_n-f')\rightarrow 0$$

$$\forall x \in I, \ \left| P_n(x) - f(x) \right| = \left| \int_0^x \left(Q_n(t) - f'(t) \right) dt \right| \le \int_0^x \left| Q_n(t) - f'(t) \right| dt \quad ou \quad \int_x^0 \left| Q_n(t) - f'(t) \right| dt \quad selon \ le \ signe$$

de x, quoiqu'il en soit
$$\forall x \in I$$
, $\left| P_n(x) - f(x) \right| \le \int_{-a}^{a} M(Q_n - f') dt = 2aM(Q_n - f') \to 0$

Ainsi
$$N(P_n - f) \le (2a+1)M(Q_n - f')$$
, donc (P_n) CV vers f au sens de N

On peut donc affirmer que $\mathbb{R}[X]$ est dense dans (E,N)

Q14. On utilise les résultats de la question 2.

Si
$$n \neq 0$$
, $uov(f_n) = u(nW_{n-1}f_n) = nW_{n-1}\frac{2}{\pi}W_nf_n$, or $W_{n-1}W_n = \frac{2}{\pi} \Rightarrow si \ n \neq 0$, $uov(f_n) = f_n$

$$uov(f_0) = u(f_0) = \frac{2}{\pi}W_0f_0 = f_0$$

Finalement $\forall n \in \mathbb{N}, uov(f_n) = f_n$

Q15.
$$\forall P \in \mathbb{R}[X], P(x) = \sum_{n=0}^{d} \alpha_n f_n(x) \Rightarrow uov(P) = \sum_{n=0}^{d} \alpha_n uov(f_n) = P$$

Ainsi la restriction de uov à $\mathbb{R}[X]$ est Id.

On pose
$$v:(E,N) \rightarrow (E,M)$$
, $u:(E,M) \rightarrow (E,M)$ et $\varphi = uov:(E,N) \rightarrow (E,M)$

D'après les questions 10 et 8., la fonction φ est continue de (E,N) dans (E,M).

La fonction Id l'est aussi, or ces deux fonctions coïncident sur $\mathbb{R}[X]$ qui est dense dans E

Finalement $\forall f \in E, uov(f) = Id(f) = f$.

Q16.
$$\forall f \in \ker v \text{ on } a \ v(f) = 0 \Rightarrow uov(f) = u(0) = 0 = f$$

Donc si $\ker v = \{0\}$ alors v est injectif

(j'informe le lecteur attentif que même si uov = Id je ne peux pas dire que v est bijectif car il faudrait pour cela avoir également vou = Id)