Question 1:

 $\chi_A(x) = x(x-1)(x-4)$, donc A admet 3 valeurs propres $\{0,1,4\}$ distinctes en dimension 3, f est finalement bien diagonalisable. Chaque espace propre est de dimension 1 et on a :

$$E_0 = Vect((1, -2, 0))$$
, $E_1 = Vect((1, 0, 1))$ et $E_4 = Vect((1, -1, 0))$

On pose donc
$$P = \begin{pmatrix} 1 & 1 & 1 \\ -2 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix}$$
 et $D = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 4 \end{pmatrix}$

Question 2:

On a
$$A = PDP^{-1}$$
 d'où $A^m = PD^mP^{-1}$ avec $P^{-1} = \begin{pmatrix} -1 & -1 & 1 \\ 0 & 0 & 1 \\ 2 & 1 & -2 \end{pmatrix}$

Finalement:
$$A^{m} = \begin{pmatrix} 2(4)^{m} & 4^{m} & -2(4)^{m} + 1 \\ -2(4)^{m} & -4^{m} & 2(4)^{m} \\ 0 & 0 & 1 \end{pmatrix}$$

Question 3:

On note
$$M = (m_{ij})$$
, on a $MD = DM \Leftrightarrow \begin{pmatrix} 0 & m_{1,2} & 4m_{1,3} \\ 0 & m_{2,2} & 4m_{2,3} \\ 0 & m_{3,2} & 4m_{3,3} \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ m_{2,1} & m_{2,2} & m_{2,3} \\ 4m_{3,1} & 4m_{3,2} & 4m_{3,3} \end{pmatrix}$

Donc $m_{i,j} = 0$ si $i \neq j$

Les matrices qui commutent avec D sont les matrices diagonales

Question 4:

$$Si\ H^2 = D\ alors\ HD = H^3\ et\ DH = H^3\ donc\ DH = HD$$

Question 5:

Si $H^2 = D$ alors d'après la question3, H est nécessairement diagonale.

Réciproquement, soit H une matrice diagonale dont les termes diagonaux sont a,b et c. Son carré sera aussi diagonale est les termes diagonaux seront a^2,b^2 et c^2

Donc si $H^2 = D$ alors a = 0, $b = \pm 1$ et $c = \pm 2$

$$H^{2} = D \Leftrightarrow H = H_{1} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} ou \ H_{2} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{pmatrix} ou \ H_{3} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 2 \end{pmatrix} ou \ H_{4} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -2 \end{pmatrix}$$

$$h \in R\left(f\right) \Leftrightarrow HA = AH \Leftrightarrow HPDP^{-1} = PDP^{-1}H \Leftrightarrow P^{-1}HPD = DP^{-1}HPD$$

il faut et il suffit que $P^{-1}HP$ soit l'une des 4 matrices obtenues soit $H = PH_iP^{-1}$

$$PH_{1}P^{-1} = \begin{pmatrix} 4 & 2 & -3 \\ -4 & -2 & 4 \\ 0 & 0 & 1 \end{pmatrix}, PH_{2}P^{-1} = \begin{pmatrix} -4 & -2 & 5 \\ 4 & 2 & -4 \\ 0 & 0 & 1 \end{pmatrix}$$

$$PH_{3}P^{-1} = \begin{pmatrix} 4 & 2 & -5 \\ -4 & -2 & 4 \\ 0 & 0 & -1 \end{pmatrix}, PH_{4}P^{-1} = \begin{pmatrix} -4 & -2 & 3 \\ 4 & 2 & -4 \\ 0 & 0 & -1 \end{pmatrix}$$

Question 6:

 $J^3 = 3J$, donc pour entier m non nul $J^m = 3^{m-1}J$

On pose alors $A = I_3 + J$, comme l'identité commute avec J, d'après le binôme de Newton

$$A^{m} = \sum_{k=0}^{m} {m \choose k} J^{k} = I_{3} + \sum_{k=1}^{m} {m \choose k} 3^{k-1} J = I_{3} + \frac{1}{3} \left(\sum_{k=1}^{m} {m \choose k} 3^{k} \right) J = I_{3} + \frac{1}{3} \left((3+1)^{m} - 1 \right) J$$

On a donc bien $A^{m} = I_{3} + \frac{1}{3}(4^{m} - 1)J$

Dans le cas ou m est nul : $I_3 + \frac{1}{3}(4^0 - 1)J = I_3 = A^0$, la formule reste donc valable

Question 7:

 $\chi_A(x) = (x-1)^2(x-4)$ donc le spectre est réduit à $\{1,4\}$

Question 8:

D'après la question 6 on a
$$f^{m} = Id + \frac{1}{3}(4^{m} - 1)j = 1^{m}\left(Id - \frac{1}{3}j\right) + 4^{m}\left(\frac{1}{3}j\right)$$

Si on pose $p = Id - \frac{1}{3}j$ et $q = \frac{1}{3}j$ on a bien $f^m = 1^m p + 4^m q$, ce qui prouve l'existence

Réciproquement si on a $f^m = 1^m p + 4^m q$, nécessairement on aura

p+q=Id et p+4q=f=Id+j, en résolvant ce système on trouve bien

$$q = \frac{1}{3}j \quad et \quad p = Id - \frac{1}{3}j$$

Question 9:

Soit $(a,b) \in \mathbb{R}^2$ telsqueap + $bq = 0 \Rightarrow aId + \left(\frac{-a}{3} + \frac{b}{3}\right)j = 0$ or Id et j sont linéairement indépendants donc a = b = 0, ce qui prouve bien que la famille (p,q) est libre

Question 10:

$$q^2 = \frac{1}{9}j^3 = \frac{3}{9}j = q$$

$$p^{2} = \left(Id - \frac{1}{3}j\right)^{2} = Id - \frac{2}{3}j + \frac{1}{9}j^{2} = Id - \frac{1}{3}j = p$$

$$poq = \left(Id - \frac{1}{3}j\right)o\left(\frac{1}{3}j\right) = \frac{1}{3}j - \frac{1}{9}j^2 = 0$$

 $de \ m\hat{e}me \ qop = 0$

Soit $h = \alpha p + \beta q \in R(f)$ alors $h^2 = \alpha^2 p + \beta^2 q = f = p + 4q$ or (p,q) est libre donc $\alpha^2 = 1$ et $\beta^2 = 4$. On en déduit que $Vect(p,q) \cap R(f) = \{p + 2q, p - 2q, -p + 2q, -p - 2q\}$

Question 11:

Nous savons déjà que le polynôme caractéristique de f est scindé et admet deux valeurs propres : 1 est double et 4 est simple

$$\dim E_4 = 1$$
 et $E_4 = Vect((1,1,1))$

$$rang(A-I_3)=1$$
 $donc dim E_1=2$ et $E_1=Vect((1,-1,0),(1,0,-1))$

La somme des dimensions des espaces propres est égale à la dimension de l'espace donc f est diagonalisable.

On obtient la matrice de changement de base $\begin{pmatrix} 1 & 1 & 1 \\ -1 & 0 & 1 \\ 0 & -1 & 1 \end{pmatrix}$ et la matrice de f dans cette nouvelle base est

$$D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 4 \end{pmatrix}$$

Dans cette base on a aussi les matrices de p et
$$q$$
: $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ et $\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$

Question 12:

La matrice
$$K = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
 vérifie $K^2 = I_2$ de même la matrice $H = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 2 \end{pmatrix}$ vérifie $H^2 = D$

Question 13:

La matrice dans la base de vecteurs propres de
$$f$$
 de $\alpha p + \beta q = \begin{pmatrix} \alpha & 0 & 0 \\ 0 & \alpha & 0 \\ 0 & 0 & \beta \end{pmatrix}$, donc toute matrice

combinaison des matrices de p et de q sera donc diagonale, donc si on considère l'endomorphisme h associé à la matrice H de la question 12, il n'est pas combinaison de p et q et appartient à R(f)

Question 14:

L'endomorphisme f est diagonalisable, donc $\mathbb{R}^3 = E_1 \oplus E_4$

Si h appartient à R(f), alors h et f commutent donc E_1 et E_4 sont stables par h, donc les restrictions respectives de h à E_1 et E_4 sont des endomorphismes respectivement de E_1 et de E_4 .

Si
$$\varepsilon_3 = (1,1,1) \in E_4 \Rightarrow h(\varepsilon_3) \in E_4 = Vect(\varepsilon_3)$$
 donc ε_3 est vecteur propre de h

De plus $(h/E_1)^2 = f^2/E_1 = Id_{E_1}$, donc h/E_1 est une symétrie de polynôme annulateur $X^2 - 1$ qui est simplement scindé donc h/E_1 est diagonalisable, il existe $(\mathcal{P}_1, \mathcal{P}_2)$ une base de E_1 telle que la matrice de

$$h/E_1$$
 dans cette base soit diagonale $\Delta = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$

Finalement dans cette base la matrice de h sera diagonale Finalement tout endomorphisme de R(f) est diagonalisable