Problème:

Dans tout le problème n désigne un entier naturel non nul , on note I_n la matrice identité de $M_n(\mathbf{R})$

Pour toute matrice $M \in M_n(\mathbf{R})$, on désigne le polynôme caractéristique de M par :

$$P_{M}(x) = \det(xI_{n} - M)$$

L'espace vectoriel \mathbf{R}^n est muni de sa base canonique $\beta = \{e_1, e_2, \dots, e_n\}$

On identifie \mathbf{R}^n et l'ensemble des matrices colonnes $\mathbf{M}_{n,1}(\mathbf{R})$

On dira qu'un vecteur $X \in \mathbb{R}^n$ est positif (resp. strictement positif) et on notera $X \ge 0$ (resp. X > 0) lorsque toutes ses coordonnées dans la base β sont positives (resp. strictement positives)

Pareillement on dira qu'une matrice $M \in M_n(\mathbf{R})$ est positive (resp. strictement positive) et on notera $M \ge 0$ (resp. M > 0) lorsque tous ses coefficients sont positifs (resp. strictement positifs)

On notera SpecA l'ensemble des valeurs propres réelles de A et lorsque Spec $A \neq \emptyset$, on pose $\rho(A) = \sup_{\lambda \in SpecA} (|\lambda|)$

Pour $J \subset [1, n]$, on pose $F_J = Vect(e_i, i \in J)$

On dira que $A \in M_n(\mathbf{R})$ est irréductible si $\{0\}$ et \mathbf{R}^n sont les seuls sous espaces vectoriels de \mathbf{R}^n de la forme F_J , stables par l'endomorphisme associé à la matrice A dans la base β

On admettra dans les parties I et II qu'une matrice positive irréductible admet une valeur propre $\lambda>0$ associée à un vecteur propre $X\geq 0$

La démonstration de ce résultat fait l'objet de la partie III.

Préliminaires:

1.a: Donner un exemple de matrice $A \in M_2(\mathbf{R})$ pour laquelle $SpecA = \emptyset$

1.b: Montrer que pour tout matrice $A \in M_3(\mathbf{R})$, $SpecA \neq \emptyset$

2.a. : Soit $A \in M_n(\mathbf{R})$ et A > 0, soit $e_{i_0} \in \beta$, montrer que $Ae_{i_0} > 0$

2.b.: Prouver que si $J \subset [1,n]$, $J \neq [1,n]$, $i_0 \in J$, alors le sous espace F_J n'est pas stable par l'endomorphisme associé à A

2.c.: En déduire que si $A \in M_n(\mathbf{R})$, A > 0 alors A est irréductible

Partie I:

On considère A une matrice positive irréductible et $\lambda \in SpecA$, $\lambda > 0$

On pose $(x_i)_{i\in[1,n]}$ les coordonnées dans β du vecteur propre positif X de la matrice A associé à λ

 $1.a.: On\ pose\ J=\{i\in [\![1,n]\!], x_i\neq 0\}$, montrer que $\ \forall i\not\in J, \forall j\in J$, $a_{ij}=0$

1.b. : Prouver que F_J est stable par l'endomorphisme associé à A

1.c.: En déduire que X > 0

2. On note $Y = \begin{pmatrix} y_1 \\ \cdot \\ \cdot \\ y_n \end{pmatrix}$, un vecteur propre de A associé à une valeur propre réelle μ , on pose $m = \sup_{1 \le i \le n} \frac{|y_i|}{x_i}$

et p l'entier tel que $p \in [1, n]$ et $m = \frac{|y_p|}{x_p}$

2.a. : Montrer que $\mu y_p = \sum_{j=1}^n a_{pj} y_j$

2.b. : En déduire que $|\mu| \le \lambda$

On vient donc de prouver que $\lambda = \rho(A)$

- 3. Montrer que si μ est une valeur propre non nulle de A associée à un vecteur propre positif, alors $\mu > 0$ et $\mu = \lambda$
- 4. Dans cette question on suppose que A > 0, soit Y un vecteur propre associé à la valeur propre $\rho(A)$. Prouver que Y est colinéaire à X.
- 5. Le but de cette question est de généraliser le résultat de la question 4 au cas où $A \ge 0$. Soit $Y \ne 0$ un vecteur positif dont au moins une coordonnée est nulle. On pose $Z = (I_n + A)Y$ et on note $(z_1, ..., z_n)$ ses coordonnées dans β .

$$On\ introduit\ \ J=\left\{i\in \boxed{1,n},n,y_i\neq 0\right\}\ et\ J'=\left\{i\in \boxed{1,n},n,z_i\neq 0\right\}$$

5.a. : Montrer que $J \subset J'$

5.b. : En supposant que J = J', prouver que $\forall i \notin J, \forall j \in J$, $a_{ij} = 0$

5.c. : En déduire que l'inclusion $J \subset J'$ est stricte

5.d.: En déduire que $(I_n + A)^{n-1} > 0$

5.e.: En considérant X' un vecteur propre non nécessairement positif, associé à $\rho(A)$. Montrer que X' est colinéaire à X.

Partie II:

On a démontré, à la partie I que l'espace propre associé à la valeur propre $\rho(A)$, où A est une matrice positive irréductible, est de dimension 1

On se propose de montrer que $\rho(A)$ est une valeur propre simple.

Pour alléger les notations , on pose $\rho = \rho(A)$ et $B = {}^tCom(\rho I_n - A)$, on suppose que $B \neq 0$

- 1. Montrer que $(\rho I_n A)B = 0$
- 2. Montrer que B est de rang 1 et préciser son image
- 3. En déduire que si une colonne de B n'est pas nul, alors elle ne contient aucun coefficient nul et tous ses coefficients sont de même signe
- 4.a. : Soit $J \subset [1,n]$ et I son complémentaire , en remarquant que $(F_J)^{\perp} = F_I$, pour le produit scalaire canonique de \mathbf{R}^n , prouver que tA est irréductible
- 4.b. : Justifier que si une colonne de 'B n'est pas nulle, alors elle ne contient aucun coefficient nul et que tous ses coefficients sont de même signe
- 5. En déduire que tous les coefficients de B sont non nuls et de même signe .

6. On note $diag(x_1,...,x_n)$ la matrice diagonale dont les x_i sont les coefficients diagonaux, on définit une application de \mathbf{R}^n dans \mathbf{R} par:

$$\varphi(x_1,...,x_n) = \det(diag(x_1,x_2,...,x_k,...,x_n) - A)$$

6.a. : Calculer pour tout
$$k \in [1, n]$$
 la dérivée partielle $\frac{\partial \varphi}{\partial x_k}(\rho, \rho, ..., \rho)$

6.b. : En déduire que $P'_{A}(\rho) = tr(B)$

7. Justifier que ρ est bien une racine simple

Partie III:

A désigne toujours une matrice positive inversible

On se propose désormais de prouver l'existence d'une valeur propre positive associée à un vecteur propre positif.

$$1. \quad Soit \ K = \left\{Y \in \mathsf{M}_{n,1}\left(\mathbf{R}\right), Y \geq 0 \ et \ \left\|Y\right\| = 1\right\} \ où \ \left\|Y\right\| = \sum_{i=1}^{n} \left|y_{i}\right|$$

Prouver que $K' = (I_n + A)^{n-1}(K)$ est un compact de \mathbf{R}^n et que $K' \subset (\mathbf{R}^{*+})^n$

2. Soit
$$r(X) = \inf_{i \in [1,n]} \left(\frac{1}{x_i} \sum_{k=1}^n a_{ik} x_k \right)$$
 où (x_i) sont les coordonnées de X

Justifier l'existence de $\lambda = \sup_{X \in K'} r(X)$ et prouver l'existence de $X_0 \in K'$ tel que $r(X_0) = \lambda$

3.a. : Justifier que $AX_0 - \lambda X_0 \ge 0$

3.b : On suppose $AX_0 - \lambda X_0 \neq 0$, prouver l'existence de $Y_0 > 0$ tel que $AY_0 - \lambda Y_0 > 0$

3.c. : En déduire une contradiction avec la définition de $\,\lambda\,$